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TECHNICAL PAPER

TIME-FREQUENCY REPRESENTATION OF A HIGHLY NONSTATIONARY SIGNAL
VIA THE MODIFIED WIGNER DISTRIBUTION

I. INTRODUCTION

This report describes and evaluates a new signal processing technique called the modified
Wigner distribution (MWD) used for the spectral analysis of highly nonstationary multicomponent
signals. The regular Wigner distribution(WD)is capableof providinghigh resolutiontime-frequency
estimatesof nonstationarysignals whichare commonin many fields including the dynamicresponse
of rotating machinery. A traditional tool for such analysishas been the short-timeFouriertransform
(STFT), commonlyreferred to as "overlap" processing,which is obtainedby applyinga fixed-length
moving time window to nonstationary data prior to performing the fast Fourier transform (FFT).
However, if spectral components within the signal vary considerably in frequency during the time
window,the STFT oftenfails in providingenoughfrequencyresolutionto identifykey time-frequency
spectral characteristics.

The WD was originally introduced in 1932 by E. Wigner.1 It received little attention until
1980 when Claasen and Mecklenbrauker2 presented a comprehensivethree-part paper describing
the utility of the WD as a tool for time-frequencyanalysisof nonstationarysignals.

Major obstacles arise in the direct use of the WD. Most notable of these problems are alias-
ing and the generation of artifact_ or "phantom"spectral peaks in the resultant time-frequencydis-
tribution. A number of attempts, with varying degreesof success, have been employed to minimize
these effects.3-5 This paper presentsyet another approach.With the introductionof the "smart win-
dow," this approachwill hopefullyovercomethese obstacles.

The MWD will have important application in turbomachinery diagnostic analysis. It is
particularly suited to those turbomachineryoperationswhich are highly transient, i.e. during startup
or ramping conditions. It can also be an important diagnostic tool in failure analysis where the
dynamic signals are highly nons_tionary.

II. THE WIGNER DISTRIBUTION

The WD is a powerfultool in determiningthe time-frequencycharacteristicsof a highly non-
stationary signal. The technique has been applied successfully in the identification of abnormal
machine operating states through vibration signal analysis.3 Other applications of the WD include
the analysis of time-varyingspectra in optics, speech,sonar, and seismic signal processing.

The WD of a real signal r(t) is given by:

W(t,j') =_z(t+'cl2)z*(t-'cl2) eJ2_rf_d'c , (1)



where z(t) is the analytic signal of r(t), z(t) = r(t) +j i(t), and i(t) is the Hilbert transform (HT) of
r(t), i(t) = HT{r(t)}. Let the absenceof limitson the integralsymbol denote the interval (--_, _). In
equation (1), z*(t) represents the complexconjugateof the analytic signal z(t). Therefore, the WD is
the Fourier transform (FT) of the product between the original forward signal and corresponding
backward signal both centered at time t. If the frequency of a subject narrowband signal is either
monotonically increasing or decreasing within its time window, the product of this forward and
backward signal will provide frequency cancellation, and, as a result, will estimate a frequency
corresponding to the signal frequency at the center of the time window. However, the product in
equation (1), which serves as the kernel of the FT, introducesa frequencysummingeffect. Taking a
real single component signal with a discrete component at fo as an example, the summing effect
produces a peak in the WD spectrum at 2fo. For this reason, equation (1) scales the subject time
signal by two. However,this scaling is only aestheticand does not relax samplingconstraintson the
time signal. If 2fo is greater than the originalNyquist frequency (determinedwhen the subject time
signal was originally sampled) aliasing within the WD spectrum will occur. For this reason, an
analytic signal is used in equation(1) since it has no energy at negative frequencies.Aliasing due to
the frequency summing effect can now be avoided, and, in addition, frequency difference effects
(coupling between positive and negative frequency components)are eliminated. Essentially, use of
the analytic signal in equation (1) returns the samplingrate constraint for a subject time signal back
to its originalNyquist rate.

Prior to introducing the MWD,sample graphical illustrationsof the WD for cases involving
simple sinusoids will be presented. In the examples, the WD's will be processed through convolu-
tion in the frequencydomainsince this formatconveysthe frequencysummingand differenceeffects
well.

Before developingcase I of the WD, equation (1) will be simplified into a convenient form
representingconvolutionin the frequencydomain.Takingthe originalequation andreplacing "t'/2with
z',gives

W(t,f) = Iz(t+'¢) z*(t-'¢) eJ2rcf_ d'¢ . (2)

Note, with removal of "r/2 from the WD equation, f now represents twice the actual frequency of
spectral components contained in the original time signal. To simplify further evaluation, one should
just consider one cross section of the WD at t = to

W(to,f) = SZ(to+_) z*(to-_) eJ2r_f_ d_ . (3)

Letting

x(t) =--Z(to+_)

y(t) = Z*(to-_)

Equation (3) can be viewed as the FT of the productx(t)y(t)

W(to,f) = FT{x(t)y(t)} . (4)
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The FT of the product x(t)y(t) can also be viewed as a convolution in the frequency domain. Given
that

x(t) €:_ X(ot)

y(t) €:_ Y(o_)

where _ denotes FT pair.

Equation (4) can now be written as the convolution

W(to,f)= Jx(a)Y(f-a) da . (5)

This form of the WD will be used in the following graphical evaluations.

WD CASE I: ANALYTIC SIGNAL CONTAINING SINGLE SINUSOID

For this case, the real signal is a single sinusoid at frequency fo

r(t) = cos (2ZCfot)

The imaginary portion of the analytic signal, z(t), is calculated through the HT of the real signal

i(t) = HT{cos (2rCfot)}= sin (2rCfot)

The analytic signal, z(t), now becomes

z(t) = cos (21rfot) + j sin (2ZCfot)= ej 2rcf°t

The complex conjugate of z(t) is

z*(t) = e-j2_zf°t

and

Z*(-t) = e j21rf°t

Moreover, the FT of both z(t) and z*(-t) is a delta function shifted byfo.

FT{e j2zrf°t } = 5(f-fo)

This sample case is now in proper form with respect to equation (4), with

x(t)=z( ,

y(t) = z*(-z) , (to = O)

and



X(f) = t_(f-fo) ,

Y(f) = _ (f-fo)

With to = 0, equation (5) can be written as a function of frequency only

WOe)= I X(o0 F0e-a) dcz , (6)

and the WD for case I can now be developed graphically (fig. 1) through convolution in the frequency
domain.

The left-hand side of figure 1 displays the translation of the Y(-a) spectrum during the con-
volution process defined by equation (6). The right-hand side of the figure shows successive contri-
butions to the WD spectrum as the frequency, f, varies during the convolution. For this case involv-
ing the analytic signal of a single sinusoid, a contribution to W(f) is made only when f = 2fo.
Remembering that f now represents twice the actual frequency of spectral components contained in
the original time signal, f must be scaled by 1/2 to yield a correct frequency value. In this case, the
true frequency would be 2fol2, orfo, which is the expected result.

WD CASE II: ANALYTIC SIGNAL CONTAINING MULTIPLE SINUSOIDS

For this case, the real signal is composed of two sinusoids at frequencies offl and f2

r(t) = {cos (2nrflt) + cos (2nrf2t)}

This case is identical to WD case I except that the real signal contains two discrete components.
Using the same method of reduction as in the previous case yields

XOe) = _(f-fl)+_(f-f2) ,

Y00 = S(f-fl)+ _ Oe-f2)

Again, using equation (6), the WD for case II can be developed graphically (fig. 2) through convolu-
tion in the frequency domain.

As in figure 1, the left-hand side of figure 2 displays the translation of the Y(-tz) spectrum
during the convolution defined by equation (6), and, the right-hand side shows successive contribu-
tions to the WD spectrum as the frequency, f, varies. Since the original time signal contains multiple
discrete components, peaks in the WD spectrum are generated when f = 2./'1and f = 2f2. Again,
scaling by V2 yields the correct frequency representations of the spectral components. However, in
this case, the WD spectrum also exhibits a contribution atf=fl+f2. This contribution is due to cross
term coupling between the components at fl and f2. This coupling is displayed in figure 2 where the
peaks b and c of the X(tz) spectrum line up with peaks c and b of the Y([fl+f2] - tz) spectrum. This
cross coupling effect contributes a peak to the WD spectrum at the frequency [fl+f2]. After scaling,
this false peak would appear in the WD spectrum at a frequency of Ill+f2]/2.

Generation of false peaks due to cross coupling effects severely limits the practical applica-
tion of the WD since few real world signals are single component. As shown in the previous
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example, use of the conventional WD in developing time-frequency representations of multi-
component signals, even with the use of an analytic signal, introduces erroneous spectral com-
ponents. These "phantom" peaks only confuse the resulting WD spectrum.

III. THE MODIFIED WIGNER DISTRIBUTION

In order for the WD to perform as a practical tool in the time-frequencyanalysis of multi-
component signals, unwanted erroneous spectral components due to cross coupling among both
negative, and most notably, positive frequencycomponentsin these signals must be eliminated.The
MWD accomplishes this. Thus, the superior time-frequencyresolution of the WD can be attained
without the generation of "phantom" spectralpeaks.

For a cross section of the time-frequencyrepresentation of a real signal r(t), at t = to, the
MWDis introducedand is definedby:

M(tod9= J"W(a-f/2) X(o0 Y(f-t_) dt_ , (7)

where

x(t) - r(to+t) ,

y(t) =-r(to-t) ,

and
x(t) €_x(t) ,

Y(J),:_ y(t) .

As equation (7) suggests, the MWD is evaluatedin the frequency domain using the FT's of a real
time signal centered at to and its respectivereversed signal also centered at to.The central trait of
the MWD which separates the new technique from the traditional WD is its smart frequency
window function, W(f). Use of this window function eliminates the cross coupling of positive fre-
quency components. This in turn prevents erroneous spectralpeaks from entering the MWD time-
frequency representation during the evaluation of a multicomponent signal. Moreover, use of the
smart window, W (f), eliminates cross coupling between positive and negative frequency
components by preventing their interaction during the evaluation of the MWD. There are some
limitations on the use of the smart window, and they will be discussedlater. The MWD does not
rely on the use of the analytic signal of the subject time signal; thus, the HT of the original time
signal is no longer necessary.Finally, sincethe MWD is evaluatedin the frequency domain, aliasing
due to the frequencysummingeffect is avoided.

As with the WD, the evaluationof the MWD will also be illustrated graphically. Where the
WD was reduced to a more convenient form representingconvolution in the frequency domain to
simplify its graphical presentation, the MWD is actually evaluated through convolution in the fre-
quency domain.The graphicalevaluationsof MWD's whichfollowinclude the same twocases which
were presented for the WD. MWD case I developsthe spectrumfor a real signal containinga single
sinusoid while MWD case II evaluates a real signal containingmultiple sinusoids.
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Using equation (7), MWD cases I and II can be developedgraphically throughconvolutionin
the frequencydomain.

MWD CASE I: REAL SIGNAL CONTAINING SINGLE SINUSOID

The real signal to be evaluated is a single sinusoid at frequency fo

r(t) = cos (21rfot)

The required time signals centered at to are

x(t)=cos{2zfo(to+t)},

y(t) = cos {21rfo(to-t)}

To simplify the evaluation,let to= 0, yielding

x(t)=cos {2_fo(+t)} ,

y(t) = cos {27rfo(-t)}

Fourier transformationof x(t) and y(t) givesX0') and Y0O

XOO = _ (f-fo)+S (f+fo) ,

Y(t) = _ (f+fo)+S(f-fo)

X0Oand Y0Oare equivalent with both frequency representationsconsisting of two delta functions,
one delta function being shiftedalongthe positivefrequencyaxis byfo and the other shiftedalongthe
negative frequency axis byft. Using equation(7), the MWD for case I can be developedgraphically
(fig. 3).

Figure 3 is essentiallythe same as figure 1which displays the developmentof the WD for a
signal containing a single discrete component. However,since the MWD operates on real signals,
the X(_z)and Y(_z)spectra also contain negative frequencycomponents. Moreover, figure 3 intro-
duces the smart window function, U109.The windowfunction is a gate in the frequency domain of
unity amplitude which translates along the dummyvariable(o9 axis at one half the rate of the Y(-o0
spectrum translation during the convolution.The window,as shown in figure 3, has a width in fre-
quency of 2m. This width parameteris almost inconsequentialin the processingof single component
signals such as in this case, but a proper window width is very critical in the evaluation of multi-
component signals. As previously stated, the window, IB09, eliminates cross coupling between
positive and negative frequencycomponentsby preventingtheir interaction.Moreover, it eliminates
interaction between componentsin a multicomponentsignal. The windowfunction's influence on a
multicomponentsignal will be discussedin MWD case II. For a single componentsignal, unwanted
cross coupling would have contributed a false spectralpeak at zero frequency;however, the gating
actionprovidedby the windowfunctionprohibitsthiscoupling.

For this case involvinga real signal containinga single sinusoid,a contributionto the MWD
spectrum, M(f), is made only whenf = 2ft. Notice, that when the Y(-oO spectrum has translated
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along the c_axis by 2fo, the windowfunction,Ul(3')has translatedby a frequency of one half of 2fo,
or,ft. This positioningof the windowfunction permits the desired couplingwhich only provides a
contribution to the MWD spectrum at f = 2ft. Again, this f must be scaled by 1/2to yield a correct
frequencyvalue.This yields the expectedfrequencyofft.

MWD CASE II: REAL SIGNALCONTAININGMULTIPLESINUSOIDS

In this case, the real signal consists of two sinusoidsat frequenciesoff1 andf2

r(t) = {cos (2_flt) + cos (2_f2t)}

This case is identical to MWD case I except that the real signal now contains two discrete com-
ponents. Similar simplification as in the previous case yields the frequency representations of the
time signals x(t) and y(t) with

X(f) = 5 0e-f2) + 5 (f-fl) + S 0C+fl) + 5 (f+f2) ,

Y(f) = 5 (f+f2) + 5 (f+fl) + 5 (f-fl) + 5 (f-f2) •

With these frequencyrepresentations,the MWD for case II can be developedgraphically(fig. 4)
using equation (7).

As in the previousexample,figure4 showshowthe positioningof the windowfunction allows
desired couplings which in turn make correct contributionsto M(f). These couplings result in peaks
at the frequencies 2fl and 2f2 in the final MWD spectrum.However, the key feature of the MWD,
which separates it from the conventionalWD, is its abilityto eliminatethe cross couplingof positive
frequency components. This is shown in figure 4 when f = fl+f2. At this value off, notice that
the components b and c of the X(a) spectrum line up with peaks c and b, respectively, of the
Y([fl+f2]-t_) spectrum. This is a graphic representation of cross coupling between positive
frequencycomponents.This cross couplingis eliminatedby the positioningof the frequencywindow.
Notice how the smart window is positioned between the components c and b in the Y([fl+f2]-a)
spectrum thereby preventingcross coupling.In this situation,the width of the frequency window is
critical since too wide a window would permit cross coupling. For this reason, the frequency
resolutionof the MWD in differentiatingspectralpeaks is governedby the window function, !110%In
figure 4, if [f2-fl] were less than the window width, 2m, cross couplingbetween positive frequency
componentswould occur and erroneouspeakswouldbe contributedto the MWD spectrumjust as in
WD case II.

IV. IMPLEMENTATION OF THE MODIFIED WIGNER DISTRIBUTION
IN DIGITAL FORMAT

Before developing a digital representation of the MWD, its general form given by equation
(7) will be simplified. Starting with equation (7)

M(todO= I IU(t_-fl2) X(a) Y(f-t_ ) da , (7)
where

x(t) = r(to+t) ,

y(t) - r(to-t) ,
7



and

X(t)_ x(t) ,

r(y')€:_y(t) .

Again, equation (7) defines a cross section of M(t09 at t = to. By defining

fl = 09'2)- a ,

equation (7) becomes

M(todO= -I W(-fl) X([f/2] - t) r([f/2] + t) dfl. (8)

Letting f' = 072) yields
M(toJ') = -_ W(-/3) X(f'-/3) Y(f'+B) dO. (9)

Since the window function is symmetric, W(-13) = W(/3) and equation (9) becomes

M(toJ") = -I W(/3) X (f'-/3) Y(f' +/3) d/3 . (10)

Finally, by letting y= -/3, and by invoking symmetry of the frequency window once again, the MWD
representation becomes

M(to_') = _ Ill (7) X(f'+7) Y(f'-7) dT. (11)

Note, that in this form, the MWD represents a frequency which no longer needs scaling. Moreover,
equation (11) is in a form conducive to digital implementation. The digital form of equation (11) is

+m

M(k) = _ X(k+i) r(k-i) , (12)
i=-ra

where X(k) is the discrete Fourier transform (DFT) of a subject real time series, x(n), centered at
to, and Y(k) is the DFT of y(n), the reversal of x(n), also centered at to. M(k) represents the
discrete MWD spectrum of a time signal centered at to, and the summation limits in equation (12)
constitute the smart window function. Since y(n) is the reversal of x(n), it can easily be proven that,

Y(k) = X*(k) WN-k . (13)

where

WN = e-j(2=/N).

N denotes the number of discrete values in the time history used in calculation of the spectrum with
n serving as a position index. Finally, by combining equation (13) and (12), the final form of the digi-
tal representation of the MWD is attained



+m -(k-i)

M(k) = ___X(k+i) X*(k-i) WN . (14)
i=-m

Equation (14) states that the evaluation of the MWD at frequency k is simply the sum of the left-
hand side and right-hand side of a signal's FFT spectrum,X(k), with both sides centered at fre-
quency k, modified by a phase correction term of unity amplitude. Note, that when no window is
applied (m = 0), the MWD reduces to a special form with an amplitudeequal to the power spectral
density (PSD) but modified by a phase term.

V. WIGNER AND MODIFIED WIGNER DISTRIBUTION EXAMPLES

In order to test the capability of the MWD in extreme situations, a simulated sine wave
varying linearly in frequency at a rate of -400,000 Hz/s Wasprocessed using both the traditional
STFT method and the MWD. Figure 5 shows the STFT isoplot (logarithmicin amplitude) of a sine
wave whose frequency first decreases then increases rapidly at this rate within 25 ms. The
samplingfrequency in this case is 10,240Hz, and the lengthof the moving time window is 12.5ms
(correspondingto 128 discrete data points) with 20 Hanningwindows applied. Use of the Hanning
window makes the effective time window approximately3 ms. As seen in figure 5, the STFT pro-
duces a very broad spectral peak since the frequencyof the component varies considerably during
each window. However, figure 6 shows the superior frequency resolution gained by the MWD
(equation (14)) in processingthe same simulatedsignal. Figure7 shows the block of raw time data
used in determining the first spectrum of the isoplots in figures 5 and 6. Along with this raw time
signal, figure 7 also identifies the actual input simulatedfrequencyat time 0.00625 s, the center of
the first block of data. This frequency,2,550 Hz, will serveas the benchmarkin comparingthe accu-
racy of the spectra generated by the STFT and MWD.Figure 8 shows the first spectra of figures 5
and 6 in linear format. The increasedfrequencyresolutionattainedby the MWD is readily apparent.
Moreover, the MWD is much more accuratein estimatingthe actual signal frequencyat the center of
the time window. While the STFT overestimatedthis frequency by 110 Hz, the MWD estimation
was within 40 Hz. Again, this increased accuracy can be attributed to the frequency cancellation
effect inherent to the MWD.Notice in figure 6 that, during the turn in frequency of the single com-
ponent signal, lobing on the inside turn of the time-frequencyrepresentation becomes prominent
since the frequency cancellation effect inherent to the MWD is limited during this extreme transi-
tionalperiodin which the signal is neithermonotonicallyincreasingor decreasing.

The isoplot of figure 9 has been developedthroughthe STFT of a simulatedsine wavewhose
frequencyand amplitudeboth.variedrapidlywithin the400 ms of activitydisplayed.The lengthof the
moving time windowin the STFT is 25 ms with a samplingfrequencyof 10,240Hz.Within the span
of each time window, the frequencyof the simulatedsine wave changes approximately300 Hz. For
this reason, STFT of the signal producesa very broad spectralpeak. Figure 10 shows the conven-
tional WD spectrum for the same signal processed using the same parameters as the STFT. The
increased frequency resolution relative to figure 9 is very evident.Figure 11 shows the correspond-
ing MWD spectrumfor the signal, which,in this case, providesjust as much frequencyresolution as
the WD.

As shown in the previousfigures, relative to traditionaltechniques,both the WD and MWD
provide increased frequencyresolution for a single componentsignal. However,this is not the case
in the evaluation of multiple componentssignals. Figure 12 shows the STFT isoplot of a simulated
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signal composed of two sine waves. As before, the frequencies and amplitudes of the discrete com-
ponents are changing rapidly, and the corresponding spectra! peaks are very broad. The WD spec-
trum for the same signal processed using the same parameters is shown in figure 13. With the multi-
component signal, the analysis form of the WD introduces an erroneous cross coupling component
between the two simulated sine waves. This "phantom" peak train confuses the resulting time-
frequency representation of the multiple component signal. Figure 14 is the corresponding MWD
spectrum for the multicomponent signal. As can be seen in the figure, a high frequency resolution is
attained (much improved over that of the STFT method) without unwanted cross coupling terms
corrupting the time-frequency representation.

Figure 15 is a PSD isoplot showingthe shutdownof an SSME altemate turbopumpdevelop-
ment (ATD) test rig followinga componentfailure.As seenin the STFT isoplot, followingthe failure
which occurs at 615 s into the test, the spectral distributionof the proximity probe signal becomes
very noisy. In order to study the temporal and spectral characteristics of the signal just prior and
followingthe failure, analysisfocusedon a very short time period around 615 s. Figure 16 showsthe
STFT isoplot for a 300-msperiod extendingfrom 615to 615.3 s. No clear spectral characteristicscan
be identified in this time-frequencyrepresentationof the proximityprobe measurement.Figure 17 is
the MWD spectrum for the same period using identical processing parameters. While use of the
traditionalWD would introduce numerouserroneousspectral componentsin trying to improve upon
the performance of the STFT, the MWD is successfulin providinga much clearer time-frequency
picture of the time signal without the "phantom" peaks.

As a final example, figure 18 is an "overlapped"(STFT)isoplot developedduring the failure
investigation of space shuttle main engine u/n 0215. Duringtest 901-666, the engine experienceda
premature cutoff due to a second-stage turbine-blade failure in the high pressure fuel turbopump
(HPFTP) u/n 5602R1. The 0-1-kHz isoplot of figure 18 displays the time-frequencyhistory of the
fundamental shaft rotational (synchronous) frequency, N, as taken from an external pump-end
accelerometer. As evidenced by the sudden increase in synchronous amplitude in the figure, the
pump failure initiatedat approximately3.9 s into the test. The STFT and MWD isoplots for the pump
speed transducer channel are shown in figure 19. The speed probe is a magnetic-type transducer
which registers four "blips" with every revolutionof the pump shaft, and, for this reason, the 4N
component dominates both isoplots. Note the increased frequency resolution offered in the MWD
plot of figure 19, especiallyduringthe ramp-downperiod followingthe failure. In order to attain more
insight regarding the failure, attentionwas focusedon the 100ms timeframesurroundingthe failure.
Figure 20 shows the STFT and MWD isoplots for this extremely short period. Again, notice the
increased frequency resolution offered by the MWD.Moreover,note the enhancementof the novel
character of the frequencyvariation.The frequencyseparationexhibited in both plots at N, 2N, 3N,
and 5N is currently interpreted as being caused by a phase discontinuity in these respective
frequencycomponents of the speed signal at the time of the failure. This phase discontinuity of the
shaft precession can be attributedto the suddenturbine blade loss which instantaneouslyshifted the
phase of the driving imbalance force. The frequency branching effect does not appear in the 4N
component (which represents the pure shaft rotational motion, or motion other than precession)
since the speed probe continues to count four "blips" per revolution regardless of the phase
discontinuityat the time of the failure. It is also important to note that as a result of the branching
(forking) of the frequencies,an artifact is present in the middle of the fork. This results because the
difference between the upper and lower frequencies of the branch is within the bandwidth of the
smart window.

10



VI. CONCLUDINGREMARKS

The modifiedWigner distributionhas proven very successful in determining time-frequency
representations of highly nonstationarymulticomponentsignals. The MWD offers the same time-
frequency resolution as the traditionalWigner distribution; however, through use of a "smart"
frequency window, it eliminates the annoyingcross coupling artifacts inherent to the WD. This
ability to eliminate "phantom" spectral componentsalong with its simplistic implementationmake
the modifiedWigner distributiona promisingreal-worldsignalanalysistool.
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